中文  |  EN
教师简介

 

 

 

45b13d1a025feecd7f68f1a83c14c2e

 

 

 

 

个人简介

张楠,博士,教授,博士生导师,山东大学齐鲁青年学者,山东省优秀青年科学基金项目(海外)获得者。先后参与(合作主持)美国NSFDOE及美国-秘鲁政府间合作项目等基础及重大科研攻关项目5项,发表学术论文40余篇,其中第一/通讯作者SCI收录20篇,授权发明及实用新型专利6项。202210月进入山东大学土建与水利学院工作,主要从事结构新材料研发、固废资源化、地聚物混凝土、土-结构相互作用以及结构健康监测等方面的研究工作。

教育背景

2013.09-2018.06  美国俄勒冈州立大学-土木与建筑工程系,土木工程,博士

2010.09-2013.06  河海大学-水利水电学院,水工结构工程,硕士

2006.09-2010.06  重庆交通大学-河海学院,水利水电工程,学士

工作经历

2022.10-   山东大学 土建与水利学院,教授、博士生导师

2019.06-2022.07  美国科罗拉多矿业大学 土木与环境工程系,Research Associate

2018.06-2019.05  美国俄勒冈州立大学 土木与建筑工程系,博士后研究员

2015.01-2016.01  美国俄勒冈州立大学 土木与建筑工程系,教学助理(兼职)

2013.09-2018.06  美国俄勒冈州立大学 土木与建筑工程系,科研助理(兼职)

研究方向

1. 结构新材料研发、固废资源化利用

2. 地聚物混凝土结构力学行为、断裂和损伤设计方法及数值仿真技术

3. 挡土结构及土-结构相互作用

4. 结构健康监测、智能监测技术理论及方法

5. 新能源工程结构(海上风机、光伏、波浪能转换装置等锚固结构)

科研项目

1)        山东省优秀青年科学基金项目(海外),60万元,主持,执行时间:01/01/2023-12/31/2025

2)        山东大学齐鲁青年学者高层次人才项目,120万元,主持,执行时间:01/01/2023-12/31/2027

3)        Technological Solutions for Production of Construction Materials from Sulfidic Mine Tailings of La Libertad State, 秘鲁政府及秘鲁特鲁希略国立大学,65万美元, 主要参与人,执行时间: 04/01/2022-03/31/2024;

4)        Development of Sustainable and Innovative Solutions for Reuse of Arequipa Mine Tailings as Construction Materials, 秘鲁政府及秘鲁圣奥古斯丁国立大学,120万美元, 主要参与人,执行时间: 01/01/2021-12/31/2023

5)        Sustainable Mining through Transformation of Mining Liabilities into Benefits in Arequipa Region, Peru. 秘鲁政府及秘鲁圣奥古斯丁国立大学,40万美元, 主要参与人,执行时间: 06/2019-12/2020

6)        Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring Systems, 美国国家能源部,60万美元,主要参与人, 执行时间:01/2015-05/2019

7)        Development of Algorithms for the Quantification and Simulation of Three-Dimensional Microstructure in Granular Materials , 美国自然科学基金委员会,8万美元,主要参与人,执行时间: 09/2013-12/2014.

论文发表

1)         Zhang, N., Hedayat, A., Figueroa, L., Steirer, K.X., Sosa, H. G. B. (2023). Physical, mechanical, cracking, and damage properties of mine tailings-based geopolymer: experimental and numerical investigations, Journal of Building Engineering (under revision)

2)         Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., and Morales, I. Y. (2023). Mixed-mode fracture of compacted tailing soils. I: Fracture toughness. Theoretical and Applied Fracture Mechanics, 124, 103670. (SCI收录, JCR一区)

3)         Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., & Morales, I. Y. (2023). Mixed-mode fracture of compacted tailing soils. II: Crack properties from full-field displacement fields. Theoretical and Applied Fracture Mechanics, 124, 103707. (SCI收录, JCR一区)

4)         Zhang, N., Hedayat, A., Figueroa, L., Li, H., Bolaños Sosa, H., Tupa, N., Morales, I. Y., and Loza, R. S. C (2022). Experimental studies on the durability and leaching properties of the alkali-activated tailings subjected to different environmental conditions, Cement and Concrete Composites, 130 104531 (SCI收录, JCR一区)

5)         Zhang, N., Hedayat, A., Han, S., Ma, S., Bolaños Sosa, H., Tupa, N., Morales, I. Y., and Loza, R. S. C (2022). Fracture properties of tailings-based geopolymer incorporated with class F fly ash under mode I loading conditions, Engineering Fracture Mechanics, 271, 108646. (SCI收录, JCR一区)

6)         Zhang, N., Hedayat, A., Perera-Mercado, Y., Sosa, H. G. B., Bernal, R. P. H., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2022). Including class F fly ash to improve the geopolymerization effects and the compressive strength of mine tailings-based geopolymer. Journal of Materials in Civil Engineering. 34(11), 04022313 (SCI收录)

7)         Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., Loza, R. S. C. (2021). On the incorporation of class F fly-ash to enhance the geopolymerization effects and the splitting tensile strength of the gold mine tailings-based geopolymer, Construction and Buildings Materials, 308, 125112. (SCI收录, JCR一区)

8)         Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., Loza, R. S. C. (2021). Fracture properties of the gold mine tailings-based geopolymer under mode I loading condition through semi-circular bend tests with digital image correlation, Theoretical and Applied Fracture Mechanics, 116, 103116. (SCI收录, JCR一区)

9)         Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2021). Crack evolution in the Brazilian disks of the mine tailings-based geopolymers measured from digital image correlations: An experimental investigation considering the effects of class F fly ash additions. Ceramics International, 47(22), 32382-32396. (SCI收录, JCR一区)

10)     Zhang, N., Hedayat, A., Sosa, H. G. B., Cárdenas, J. J. G., Álvarez, G. E. S., and Rivera, V. B. A. (2021). Specimen size effects on the mechanical behaviors and failure patterns of the mine tailings-based geopolymer under uniaxial compression. Construction and Building Materials, 281, 122525. (SCI收录, JCR一区)

11)     Zhang, N., Hedayat, A., Sosa, H. G. B., Cárdenas, J. J. G., Álvarez, G. E. S., and Rivera, V. B. A. (2021). Damage evaluation and deformation behavior of mine tailing-based Geopolymer under uniaxial cyclic compression. Ceramics International, 47(8), 10773-10785. (SCI收录, JCR一区)

12)     Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2021). Mechanical and fracture behaviors of compacted gold mine tailings by semi-circular bending tests and digital image correlation. Construction and Building Materials, 306, 124841. (SCI收录, JCR一区)

13)     Zhang, N., Hedayat, A., Sosa, H., Tunnah, J., Cárdenas, J., and Álvarez, G. E. S. (2021). Estimation of the mode I fracture toughness and evaluations on the strain behaviors of the compacted mine tailings from full-field displacement fields via digital image correlation. Theoretical and Applied Fracture Mechanics, 114, 103014. (SCI收录, JCR一区)

14)     Zhang, N., Zhao, S., Evans, T.M, Du, Y. Wang, H. and Lian, Y. (2022). Micromechanical behaviors and fabric within the immediate influence zone of granular-continuum interfaces. European Journal of Environmental and Civil Engineering, 26(3), 1158-1181. (SCI收录)

15)     Zhang, N., Hedayat, A., Han, S., Yang, R., Sosa, H. G. B., Cárdenas, J. J. G., and Álvarez, G. E. S.(2021). Isotropic compression behavior of granular assembly with non-spherical particles by X-ray computed tomography and discrete element modeling. Journal of Rock Mechanics and Geotechnical Engineering, 13, 972-984. (SCI收录, JCR一区)

16)     Zhang, N., T. M. Evans, Zhao, S., Du, Y., and Zhang, L. (2020). Discrete element method simulations on keying process of offshore plate anchor. Marine Georesources & Geotechnology, 38(6), 716-729. (SCI收录)

17)     Zhang, N., and Evans, T. M. (2019). Discrete numerical simulations of torpedo anchor installation in granular soils. Computers and Geotechnics, 108, 40-52. (SCI收录, JCR一区)

18)     Evans, T.M. and Zhang, N.* (2019). Three dimensional simulations of plate anchor pullout in granular materials. International Journal of Geomechanics, 19(4), 04019004.(SCI收录)

19)     Zhang, N. and T.M. Evans (2018) Three-dimensional discrete element method simulations of interface shear. Soils and Foundations, 58(4), 941-956. (SCI收录)

20)     Zhao, S., Zhang, N., Zhou, X., and Zhang, L. (2017). Particle shape effects on fabric of granular random packing. Powder Technology. 310: 175-186.(SCI收录)

21)     Zhang, N., Wang, H., Ma, S., Su, H., and Han, S. (2022). Seismic holding behaviors of inclined shallow plate anchor embedded in submerged coarse-grained soils. Geomechanics and Engineering, 28(2), 197-207.(SCI收录)

22)     Su, H., Zhang, N. and Li, H. (2018). Concrete piezoceramic smart module pairs-based damage diagnosis of hydraulic structure. Composite Structures, 183, 582-593. (SCI收录,JCR一区)

23)     Zhang, N., and Su, H. (2017). Application assessments of concrete piezoelectric smart module in civil engineering. Smart Structures and Systems, 19(5), 499-512. (SCI收录)

24)     Su, H., Zhang, N., Wen, Z., and Li, H. (2016). Experimental study on obtaining hydraulic concrete strength by use of concrete piezoelectric ceramic smart module pairs. Journal of Intelligent Material Systems and Structures, 27(5), 666-678. (SCI收录)

个人专利

 1)        一种基于压电陶瓷机敏模块的水工混凝土强度监测装置 (实用新型)

 2)        一种压电陶瓷机敏模块及水工混凝土结构健康监测试验平台. (实用新型)

 3)        一种基于压电陶瓷机敏模块的水工混凝土强度监测装置和方法. (发明专利)

 4)        一种水工混凝土结构损伤监测动荷载试验平台. (实用新型)

 5)        一种水工混凝土结构自振频率识别的测试装置. (实用新型)

 6)        一种水工混凝土结构自振频率识别的测试装置及方法. (发明专利)

学术兼职

美国土木工程师协会(ASCE)会员

中国岩石力学与工程学会会员

中国硅酸盐学会固废分会会员

中国土木工程学会会员

中国地球物理学会会员

山东省土木建筑学会会员

Ocean Engineering, Soil Dynamics and Earthquake Engineering, Advances in Engineering Software, International Journal of Geomechanics, Marine Georesources and Geotechnology, Theoretical and Applied Fracture Mechanics, Construction and Building Materials 20余个SCI期刊审稿人

《工程科学学报》  青年编委

招生信息

诚挚欢迎对地聚物混凝土结构、结构新材料研发、土-结构相互作用、结构健康监测及结构智能监测技术开发等方向感兴趣的同学与我联系交流。

课题组学习气氛轻松活泼,不定期组织集体活动,并提供优厚的劳务补贴以助力学生全身心投入科研。品学兼优者可推荐其赴海外知名高校交流和深造。

研究生招生方向:结构工程(学术性);土木水利-结构工程(专业硕士)

联系方式:

通讯地址:山东省济南市经十路17922 山东大学千佛山校区土建与水利学院

邮编250061
电子邮箱: zhang_nan@sdu.edn.cn; zhangnan.sdu@qq.com

Google Scholar: https://scholar.google.com/citations?user=JCTW0fQAAAAJ&hl=en

ResearchGate: https://www.researchgate.net/profile/Nan-Zhang-119

 

 

(English version)

 

Nan Zhang, Ph.D.

 

Full Professor in School of Civil Engineering at Shandong University, Jinan, China

Google Scholar: https://scholar.google.com/citations?user=JCTW0fQAAAAJ&hl=en

ResearchGate: https://www.researchgate.net/profile/Nan-Zhang-119

Education

Ph.D., School of Civil and Construction Engineering,                                                      2018

Oregon State University, Corvallis, OR, USA                                                                        

Ph.D. Advisor: T. Matthew Evans

Major: Geotechnical Engineering

                                                                                                                                           

M.S., School of Water Conservancy and Hydropower,                                                     2013

Hohai University, Nanjing, China                                                                                        

M.S. Advisor: Huaizhi Su

Major: Civil Engineering (Hydraulic Structure Engineering)

                                                                                                                                           

B.S., School of River and Ocean Engineering,                                                                 2010

Chongqing Jiaotong University, Chongqing, China                                                               

Major: Civil Engineering (Water Resource and Hydropower Engineering)                               

Working experience

Research Associate, Colorado School of Mines                                             06/2019-07/2022

Postdoctoral Researcher, Oregon State University                                         06/2018-05/2019

Research Assistant, Oregon State University                                                 09/2013-06/2018

Research Interests

1.Resource Utilization of Solid Wastes

2.Micro-and Macro Geomechanics

3.Offshore Geotechnics

4.Hydraulic Structure Safety Engineering

Research Project

1. Technological Solutions for Production of Construction Materials from Sulfidic Mine Tailings of La Libertad State, Co-authored as a post-doctoral research contributor, funding provided by Universidad Nacional de San Agustin de Arequipa with the total amount of $650k, project duration: 04/01/2022-07/31/2022

2. Development of Sustainable and Innovative Solutions for Reuse of Arequipa Mine Tailings as Construction Materials, Co-authored as a post-doctoral research contributor, funding provided by Universidad Nacional de San Agustin de Arequipa with the total amount of $1.2M. Project duration: 01/01/2021-07/31/2022

3. Sustainable Mining through Transformation of Mining Liabilities into Benefits in Arequipa Region, Peru (Peruvian Government) (2019-2021)

4. Funded by U.S. Department of Energy: Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (2015-2019), Major participant.

5. U.S. NSF funded: Development of Algorithms for the Quantification and Simulation of Three-Dimensional Microstructure in Granular Materials (2013-2015), Major participant.

Journal Publications

25)     Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., and Morales, I. Y. (2023). Mixed-mode fracture of compacted tailing soils. I: Fracture toughness. Theoretical and Applied Fracture Mechanics, 124, 103670

26)     Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., & Morales, I. Y. (2023). Mixed-mode fracture of compacted tailing soils. II: Crack properties from full-field displacement fields. Theoretical and Applied Fracture Mechanics, 124, 103707.

1)         Zhang, N., Hedayat, A., Figueroa, L., Li, H., Bolaños Sosa, H., Tupa, N., Morales, I. Y., and Loza, R. S. C (2022). Experimental studies on the durability and leaching properties of the alkali-activated tailings subjected to different environmental conditions, Cement and Concrete Composites, 130 104531

2)         Zhang, N., Hedayat, A., Han, S., Ma, S., Bolaños Sosa, H., Tupa, N., Morales, I. Y., and Loza, R. S. C (2022). Fracture properties of tailings-based geopolymer incorporated with class F fly ash under mode I loading conditions, Engineering Fracture Mechanics, 271, 108646.

3)         Zhang, N., Hedayat, A., Perera-Mercado, Y., Sosa, H. G. B., Bernal, R. P. H., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2022). Including class F fly ash to improve the geopolymerization effects and the compressive strength of mine tailings-based geopolymer. Journal of Materials in Civil Engineering. 34(11), 04022313

4)         Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., Loza, R. S. C. (2021). On the incorporation of class F fly-ash to enhance the geopolymerization effects and the splitting tensile strength of the gold mine tailings-based geopolymer, Construction and Buildings Materials, 308, 125112.

5)         Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., Loza, R. S. C. (2021). Fracture properties of the gold mine tailings-based geopolymer under mode I loading condition through semi-circular bend tests with digital image correlation, Theoretical and Applied Fracture Mechanics, 116, 103116.

6)         Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2021). Crack evolution in the Brazilian disks of the mine tailings-based geopolymers measured from digital image correlations: An experimental investigation considering the effects of class F fly ash additions. Ceramics International, 47(22), 32382-32396.

7)         Zhang, N., Hedayat, A., Sosa, H. G. B., Cárdenas, J. J. G., Álvarez, G. E. S., and Rivera, V. B. A. (2021). Specimen size effects on the mechanical behaviors and failure patterns of the mine tailings-based geopolymer under uniaxial compression. Construction and Building Materials, 281, 122525.

8)         Zhang, N., Hedayat, A., Sosa, H. G. B., Cárdenas, J. J. G., Álvarez, G. E. S., and Rivera, V. B. A. (2021). Damage evaluation and deformation behavior of mine tailing-based Geopolymer under uniaxial cyclic compression. Ceramics International, 47(8), 10773-10785. (JCR一区)

9)         Zhang, N., Hedayat, A., Sosa, H. G. B., Tupa, N., Morales, I. Y., and Loza, R. S. C. (2021). Mechanical and fracture behaviors of compacted gold mine tailings by semi-circular bending tests and digital image correlation. Construction and Building Materials, 306, 124841.

10)     Zhang, N., Hedayat, A., Sosa, H., Tunnah, J., Cárdenas, J., and Álvarez, G. E. S. (2021). Estimation of the mode I fracture toughness and evaluations on the strain behaviors of the compacted mine tailings from full-field displacement fields via digital image correlation. Theoretical and Applied Fracture Mechanics, 114, 103014.

11)     Zhang, N., Zhao, S., Evans, T.M, Du, Y. Wang, H. and Lian, Y. (2022). Micromechanical behaviors and fabric within the immediate influence zone of granular-continuum interfaces. European Journal of Environmental and Civil Engineering, 26(3), 1158-1181.

12)     Zhang, N., Hedayat, A., Han, S., Yang, R., Sosa, H. G. B., Cárdenas, J. J. G., and Álvarez, G. E. S.(2021). Isotropic compression behavior of granular assembly with non-spherical particles by X-ray computed tomography and discrete element modeling. Journal of Rock Mechanics and Geotechnical Engineering, 13, 972-984.

13)     Zhang, N., T. M. Evans, Zhao, S., Du, Y., and Zhang, L. (2020). Discrete element method simulations on keying process of offshore plate anchor. Marine Georesources & Geotechnology, 38(6), 716-729.

14)     Zhang, N., and Evans, T. M. (2019). Discrete numerical simulations of torpedo anchor installation in granular soils. Computers and Geotechnics, 108, 40-52.

15)     Evans, T.M. and Zhang, N.* (2019). Three dimensional simulations of plate anchor pullout in granular materials. International Journal of Geomechanics, 19(4), 04019004.

16)     Zhang, N. and T.M. Evans (2018) Three-dimensional discrete element method simulations of interface shear. Soils and Foundations, 58(4), 941-956.

17)     Zhao, S., Zhang, N., Zhou, X., and Zhang, L. (2017). Particle shape effects on fabric of granular random packing. Powder Technology. 310: 175-186.

18)     Zhang, N., Wang, H., Ma, S., Su, H., and Han, S. (2022). Seismic holding behaviors of inclined shallow plate anchor embedded in submerged coarse-grained soils. Geomechanics and Engineering, 28(2), 197-207.

19)     Su, H., Zhang, N. and Li, H. (2018). Concrete piezoceramic smart module pairs-based damage diagnosis of hydraulic structure. Composite Structures, 183, 582-593.

20)     Zhang, N., and Su, H. (2017). Application assessments of concrete piezoelectric smart module in civil engineering. Smart Structures and Systems, 19(5), 499-512.

21)     Su, H., Zhang, N., Wen, Z., and Li, H. (2016). Experimental study on obtaining hydraulic concrete strength by use of concrete piezoelectric ceramic smart module pairs. Journal of Intelligent Material Systems and Structures, 27(5), 666-678.

22)     Su, H., Zhang, N., Yang, M., Wen, Z., and Xie, W. (2015). Experimental study on natural vibration frequency identification of hydraulic concrete structure using concrete piezoceramic smart module. Journal of Vibro-engineering, 17(7).

 

Geotechnical Special Publications

1)        Zhang, N. and T. Matthew Evans (2017). Offshore Anchor Penetration in Sands: Granular Simulations, ASCE Geo-Frontier 2017, 132-142

2)        Zhang, N. and T. M. Evans (2016). Towards the Anchoring of Marine Hydrokinetic Energy Devices: Three -Dimensional Discrete Element Method Simulations of Interface Shear, ACSE Geo-Chicago 2016: 503

Conference proceedings and reports

1)         Zhang, N., Hedayat, A., Bolaños Sosa, H. G., González Cárdenas, J. J., Salas Alvarez, G. E., Rivera, V. A., & González, J. (2021). Model I fracture behaviors and strain properties of the geopolymer made by alkaline activation of gold mine tailing, In 55th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.

2)         Zhang, N., Hedayat, A., Bolaños Sosa, H. G., González Cárdenas, J. J., Salas Alvarez, G. E., Rivera, V. A., & González, J. (2020). Fracture and Failure Processes of Geopolymerized Mine Tailings under Uniaxial Compression. In 54th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association.

3)         Zhang, N.,  A. Hedayat, L. Figueroa, H.G. Bola˜nos Sosa, J.J. Gonz´alez C´ardenas, G. E. Salas ´Alvarez, V. Ascu˜na Rivera, J. Gonz´alez, (2020). Specimens size effect on the compressive strength of geopolymerized mine tailings, in: Tailings & Mine Waste Conference 2020, Keystone, CO, USA, 2020.

4)         Zhang, N. and T. Matthew Evans (2019). Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring and Mooring Systems. Final Report, U.S. Department of Energy, Washington, D.C.

5)         Zhang, N. and T. Matthew Evans (2018). Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring and Mooring Systems. Milestone Report II, U.S. Department of Energy, Washington, D.C.

6)         Zhang, N. and T. Matthew Evans (2017). Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring and Mooring Systems. Annual Report, U.S. Department of Energy, Washington, D.C.

7)         Zhang, N. and T. Matthew Evans (2016). Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring and Mooring Systems. Annual Report I, U.S. Department of Energy, Washington, D.C.

8)         Zhang, N. and T. Matthew Evans (2016). Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring and Mooring Systems. Annual Report II, U.S. Department of Energy, Washington, D.C.

9)         Zhang, N. and T. Matthew Evans (2016). Advanced Laboratory and Field Arrays (ALFA) for Marine Energy (Part IV): Robust Models for Design of Offshore Anchoring and Mooring Systems. 1st Milestone Report I, U.S. Department of Energy, Washington, D.C.

Presentations

1)         Model I fracture behaviors and strain properties of the geopolymer made by alkaline activation of gold mine tailing, In 55th US Rock Mechanics/Geomechanics Symposium. (Virtual)

2)         Fracture and failure processes of geopolymerized mine tailings under uniaxial compression, in: 54th 54th US Rock Mechanics/Geomechanics Symposium (Virtual)

3)         Specimens size effect on the compressive strength of geopolymerized mine tailings,  in: Tailings & Mine Waste Conference 2020 (Virtual)

4)         Offshore anchor penetration in sands—Granular simulations. In Geotechnical Frontiers 2017, Orlando, FL, USA

5)         Towards Anchoring of Marine Hydrokinetic Energy Devices: Three-Dimensional Discrete Element Method Simulations of Interface Shear. In ASCE Geo-Chicago 2016, Chicago, IL, USA

6)         Discrete element simulation of torpedo anchor installation into granular soils. In OSU-China Seminar 2016, Corvallis, OR, USA

Poster Presentations

1)        Zhang, N. and T.M. Evans (2017). Installation behavior of torpedo anchor in marine hydrokinetic system. In Advanced Laboratory and Field Arrays (ALFA) project annual meeting of Northwest National Marine Renewable Energy Center (NNMREC). Portland, OR, USA

2)        Zhang, N. and T.M. Evans (2016). Offshore Anchor Penetration in Sands: Granular Simulations. In Advanced Laboratory and Field Arrays (ALFA) project annual meeting of Northwest National Marine Renewable Energy Center (NNMREC). Portland, OR, USA

3)        Zhang, N. and T.M. Evans (2016). DEM Simulations of offshore plate anchor pullout in granular materials. In 3rd Northwest Geotechnical Graduate Student Symposium. Vancouver, BC, CA

4)        Zhang, N. and T.M. Evans (2016).  Anchoring of Marine Hydrokinetic Energy Devices: Three Dimensional Simulations of Interface Shear. In OSU CCE graduated-expo 2016. Portland, OR, USA

5)        Zhang, N. and T.M. Evans (2015). Soil-Structure Interaction of Marine Hydrokinetic Anchoring System. In Advanced Laboratory and Field Arrays (ALFA) project annual meeting of Northwest National Marine Renewable Energy Center (NNMREC). Portland, OR, USA

6)        Zhang, N. and T.M. Evans (2015). Particle shape quantification of granular media by using three-dimensional image processing. In 2nd Northwest Geotechnical Graduate Student Symposium. Corvallis, OR, USA

7)        Zhang, N. and T.M. Evans (2014). Quantification and Simulation of Three-Dimensional Microstructure in Granular Materials. In OSU CCE graduated-expo 2014. Portland, OR, USA

8)        Zhang, N. and T.M. Evans (2014). Local void quantification of granular media by using three-dimensional image processing. In 1st Northwest Geotechnical Graduate Student Symposium. Seattle, WA, USA

Contacts:

School of Civil Engineering

Shandong University

17922 Jingshi Road, Jinan 250061, China

Email: zhang_nan@sdu.edu.cn; zhangnan.sdu@qq.com

 

上一条:王冀鹏 下一条:毛德强

关闭

Copyright © 2018-2020    版权所有:山东大学土建与水利学院    [网站管理]

地址:山东省济南市经十路17923号    邮编:250061    电话:0531-88392446    传真:0531-88392446    院长信箱:tjyzxx@sdu.edu.cn

网址:www.tjsl.sdu.edu.cn    E-mail:tjfdw@sdu.edu.cn    技术支持:奇赛信科